POLYGON NOTES

NAME #	f of sides
TRIANGLE	3
QUADRILATERAL	4
PENTAGON	5
HEXAGON	6
HEPTAGON	7
OCTAGON	8
NONAGON	9
DECAGON	10

OF A INSIDE OF A POLYGON: # OF SIDES -2

TOTAL INTERIOR DEGREES INSIDE A POLYGON:# OF▲ INSIDE x 180°

Interior and exterior angles in a polygon are SUPPLEMENTAL (They add up to 180°)

HOW TO GET 1 INTERIOR ANGLE IN A POLYGON:

1st WAY: Total int' degrees __ by # of sides

2nd WAY: 180° - 1 ext' degree/angle

HOW TO GET 1 EXTERIOR ANGLE IN A POLYGON:

1st WAY: 360° by the # of sides 2nd WAY: 180° - 1 int' degree/angle

HOW TO GET THE # OF SIDES OF A POLYGON

1st WAY: 360° ÷ 1 ext' degree/angle

2nd WAY: (total int' degrees \div 180°) +2 = # of sides

PERIMETER of a POLYGON

1 SIDE LENGTH x TOTAL # OF SIDES = PERIMETER

8cm (5) = 40cm

3a (6) = 18a

PERIMETER BACKWARDS:

1st WAY: PERIMETER of polygon = 1 SIDE LENGTH
OF SIDES

2nd WAY: PERIMETER of polygon = TOTAL # OF SIDES

1 SIDE LENGTH

AREA OF POLYGONS

*** Every polygon has triangles INSIDE that meet in the center of the polygon***

THE # OF A INSIDE A POLYGON = THE # OF TOTAL SIDES OF THAT POLYGON

8 sides=

8 triangles

5 sides =

5 triangles

6 sides=

6 triangle

AREA FORMULA:

1st WAY: (AREA OF 1) x TOTAL # OF SIDES

2nd WAY: PERIMETER OF POLYGON x APOTHEM OF 1

÷ 2

AREA OF POLYGONS......BACKWARDS

VARIATIONS:

