QUARTILES

Quartiles divide ORDERED data into 4 EQUAL quarters...

There are 3 QUARTILES:

Q1 (25%) is the lowest quartile

Q² (50%) is the MEDIAN

Q³ (75%) is the highest quartile

HOW TO SEPERATE DATA INTO QUARTILE:

2) On the left find the middle of those #'s...on the right find the middle #

How to draw a box- whiskers plot

- 1) Get the Q^1 Q^2 Q^3 ,the minimum and maximum of your data.
- 2) On a number line, place dots of the min/ max floating above the number line

3) On the same number line, draw vertical lines above where each Q1 Q2 Q3 is found

4) Connect them!

BOX AND WHISKERS

Things to know:

- wide spaces mean # are far apart (less concentrated)
- -narrow spaces mean # are close together (very concentrated)

50% of the data is between Q1 and Q3

You cannot know the mean, mode or the original number of data from a box and whiskers alone

HOMOGENEOUS = alike

HETEROGENEOUS = different

MEASURES OF DISPERSIONS

DEF: Range of data

VARIATION INTERVAL: A square bracket which shows the lowest # and the highest #.

EX: 7,10,18,20,30

VARIATION INTV' [7,30]

INTERQUARTILE INTERVAL: A square bracket which shows the value of Q1 and Q3.

INTERQUARTILE INTV'

[6, 20]

INTERQUARTILE RANGE: The difference between Q3 and Q1

EX: Q3 - Q1

20 - 6 = 10

of DATA IN EACH QUARTER

To know quickly how many #'s are in each quarter AND if the Quartiles are fake OR real use this:

TOTAL # OF DATA = # OF DATA IN EACH QUARTER

4

4 types of answers:

You get a whole #.....Q1 / Q2 / Q3 are all FAKE!

You get a decimal of .25......Q1 and Q3 are FAKE, but Q2 is real

You get a decimal of .5......Q1 and Q3 are real, but Q2 is FAKE

You get a decimal of .75......Q1 / Q2 / Q3 are all real.