SCIENTIFIC NOTATION

- A faster way to write very large or very small #'s

Going from scientific TO decimal notation:

ex:
$$7.43 \times 10^3 \longrightarrow 7430$$

The exponent tells you ALOT

- + exponent = jumps to the <u>right from the decimal</u>
- exponent = jumps to the <u>left from the decimal</u>

*** If there is no decimal, it's there, after the 1st whole # ***

ex:
$$6.8 \times 10^{-4}$$
 $6.8 = .00068$ 7×10^{3} $9 \times 10^$

Going from decimal to scientific:

ex: 485000, = 4.85×10^5

(On a whole # the decimal is at the end)

The main # in scientific notation MUST be less than 10!!!!

A large # (more than 1) has a positive exponent

A small # (less than 1) has a negative exponent

$\div \times$ + - in scientific notation

+ /-: Turn each scientific notation INTO decimal notation, add or subtract the #s and turn back into scientific notation

$$\dot{\div} \times$$

- 1) X or the 1st part (base #),
- 2) subtract exponent if you ÷ OR add the exponents if you X

ex: (
$$1.8 \times 10^{7} \times (2.7 \times 10^{3}) = 4.86 \times 10^{10}$$

FIXING SCIENTIFIC NOTATION ANSWERS

- When the main # is too big or too small after you χ or $\overset{\bullet}{\bullet}$

FOR POSITIVE or NEGATIVE EXPONENTS

Decimal moves LEFT?

increase exponent by the # of jumps

ex:
$$25.6 \times 10^3$$
 add!!
= 2.56×10^4

ex:
$$38.57 \times 10^{-4}$$
 add!!
= 3.57×10^{-3}

Decimal moves RIGHT?

decrease exponent by the # of jumps

ex:
$$.34 \times 10^5$$
 subtract!! = 3.4×10^4

ex:
$$486 \times 10^{-7}$$
 subtract!! = 4.86×10^{-8}